Abstract

Native proteins usually undergo structural modification upon adsorption at interface. Heat treatments are commonly applied at the industrial scale and lead to aggregation of proteins. We characterized nanometric aggregates of β-lactoglobulin by infrared spectroscopy in solutions, in hexadecane oil-in-water emulsions and at the air–water interface at low and high (0.1 M) ionic strengths and at pH 7. In solutions, on the contrary to native β-lactoglobulin, all aggregates prepared with or without salt possessed intermolecular β-sheets evidenced by two strong absorption bands at 1614 cm−1 and 1682 cm−1. In emulsions, at low ionic strength, they lose their intermolecular β-sheets once they are adsorbed at the oil–water interface. At high ionic strength, most of aggregates are localized at the interfaces where they lose their intermolecular β-sheets in direct contact with the surface and only partially when they are farther from the interface. The loss of intermolecular β-sheets was similarly observed at the air–liquid interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call