Abstract
A spatially-distributed snow/ice model is used to simulate the surface mass balance of the Saint Sorlin Glacier (French Alps) over the 1981–2004 period. The modeled mass balance globally reproduces field data except over places where, because of the scarcity of measurements, small-scale features as proposed by the model are smoothed out by the data interpolation. Both measured and simulated mass balance fields are then used to force a 2-D ice flow model and comparison of respective results show similar large-scale glacier flow dynamics. On the other hand, at a smaller scale, the present-day ice distribution computed from the modeled mass balance field sometimes deviates from that obtained with the interpolated field mass balance. It particularly offers a better match to observations by succeeding in reproducing a specific deglaciation pattern in the upper part of the glacier. These preliminary results led us to consider the possibility of substituting modeled mass balance series to measured ones, especially when modeling the future of the glacier. This latter approach is thus applied to simulate the glacier response under the IPCC SRESB1 scenario. Results show a rapid decay leading to a total disappearance of the glacier by the year 2070.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.