Abstract

The direction of rotation of a wire-frame (Necker) cube, which is perceptually bistable, can be trained to depend on stimulus location (Q. Haijiang, J. A. Saunders, R. W. Stone, & B. T. Backus, 2006). However, it is not known which aspects of "location" are important to this learning. We therefore explored "location" in a series of experiments that separately assessed testing venue, location relative to the observer, and location in the retinal image as types of location signal that could potentially be recruited by the visual system. Subjects were trained using wire-frame cubes with rotation direction disambiguated by depth cues. Training cubes were presented at two locations, rotating in opposite directions. On interleaved test trials, ambiguous monocular cubes were presented at the same two locations. The extent to which test cubes were perceived to rotate according to the trained location-rotation contingency was our measure of location-cue recruitment. We found that only retinal position was recruited as a cue for apparent rotation direction. Furthermore, the learned retinal location cue was robust to ocular transfer. Our findings are consistent with a relatively low-level site of learning, such as MT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.