Abstract
Selective ensemble learning has become a powerful tool for biological information analysis of gene expression data.In order to mining gene expression data better,we use ensemble of Extreme Learning Machine(ELM) to overcome the shortage that a single ELM is unstable in data classification.In this paper,we propose an algorithm,which is the dissimilarity ensemble based on disagreement measure of Extreme Learning Machines(D-D-ELM).First,we judge the dissimilarity of Extreme Learning Machines with disagreement measure.Then we remove the corresponding ELMs based on the average classification accuracy.At last,the rest ELMs are grouped into an ensemble classifier by the strategy of majority voting.This algorithm is applied on the data of gene expression Breast,Leukemia,Colon,Heart.The theoretical analysis and experiment are given and the statistical analysis on the experimental results demonstrates that D-D-ELM can achieve better classification accuracy with less number of ELMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.