Abstract

Thermal data products derived from remotely sensed data play significant roles as key parameters for biophysical phenomena. However, a trade-off between spatial and spectral resolutions has existed in thermal infrared (TIR) remote sensing systems, with the end product being the limited resolution of the TIR sensor. In order to treat this problem, various disaggregation methods of TIR data, based on the indices from visible and near-infrared (VNIR), have been developed to sharpen the coarser spatial resolution of TIR data. Although these methods were reported to exhibit sufficient performance in each study, preservation of thermal variation in the original TIR data is still difficult, especially in fire areas due to the distortion of the VNIR reflectance by the impact of smoke. To solve this issue, this study proposes an efficient and improved disaggregation algorithm of TIR imagery on wildfire areas using guided shortwave infrared (SWIR) band imagery via a guided image filter (GF). Radiometric characteristics of SWIR wavelengths could preserve spatially high frequency temperature components in flaming combustion, and the GF preserved thermal variation of the original TIR data in the disaggregated result. The proposed algorithm was evaluated using Landsat-8 operational land imager (OLI) and thermal infrared sensor (TIRS) images on wildfire areas, and compared with other algorithms based on a vegetation index (VI) originating from VNIR. In quantitative analysis, the proposed disaggregation method yielded the best values of root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (CC), erreur relative globale adimensionelle de synthèse (ERGAS), and universal image quality index (UIQI). Furthermore, unlike in other methods, the disaggregated temperature map in the proposed method reflected the thermal variation of wildfire in visual analysis. The experimental results showed that the proposed algorithm was successfully applied to the TIR data, especially to wildfire areas in terms of quantitative and visual assessments.

Highlights

  • Thermal data is related to emissivity of objects on the ground, and this property can account for biophysical phenomena [1,2]

  • The efficient and improved disaggregation algorithm of thermal infrared (TIR) imagery using guided shortwave infrared (SWIR) imagery was proposed for wildfire conditions

  • The SWIR imagery radiometrically satisfied the preservation of a high temperature component in flaming combustion, and the guided image filter (GF) prevented the spectral distortion of the original TIR data and simultaneously preserved the high frequency component of SWIR image in the disaggregated result

Read more

Summary

Introduction

Thermal data is related to emissivity of objects on the ground, and this property can account for biophysical phenomena [1,2]. A trade-off exists between spatial and spectral resolutions in any spaceborne remote sensing system [3,4] This limitation appears especially in thermal infrared (TIR) sensors. TIR sensors in the Landsat-8 platform obtain the radiation emitted by the earth in a range of 10–13 μm, but the TIR band retrieves lower total radiation than visible-near infrared (VNIR) and shortwave infrared (SWIR) bands. Due to this radiometric characteristic of the TIR sensor, the spatial resolution of the TIR band is coarser than that of other bands. The purpose of TIR disaggregation is to sharpen the coarser spatial resolution of TIR images by introducing spatial detail from a finer resolution multispectral (MS) image, without distortion of spectral information

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call