Abstract

AbstractEvaluating how nitrogen (N) sources are attenuated throughout the landscape is critical to further our understanding of catchment‐scale N budgets. We developed a catchment‐scale N budget for a mixed land use karst springshed using in situ measurements (nitrate leaching fluxes and attenuation) and long‐term records (surface N inputs and spring exports) to estimate 20‐year average landscape‐scale N loading, attenuation, and export. We introduce a conceptual model framework to compute N export that can be applied consistently for point or nonpoint sources. The model is based on the product of only four components for each N source: population density or proportion of land cover, P; specific load, L; anthropogenic attenuation, A; and natural attenuation, N. The product of these components is computed for each N source and then integrated at the basin scale. The concise PLAN model framework predicted attenuation of 90% ± 3% of N inputs, in close agreement with the estimate based on measured spring mass discharge (87% ± 3%). Further, when this attenuation is disaggregated along the hydrological flow path, we estimate that 64% of inputs are lost in the surface soil, 20% in the vadose zone, and 6% in the aquifer. Livestock and human wastes were estimated to be the dominant contributors to spring N export, which was independently supported by isotopic data. The PLAN model is a simple, transferable framework that supports systematically computing N export based on proportioning of load and attenuation. Identifying the main sources of N ultimately contributing to discharged N loads is a critical step toward source‐related water‐quality management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.