Abstract

The tumor necrosis factor family ligand, tumor necrosis factor-related activation-induced cytokine (TRANCE), and its receptors, receptor activator of nuclear factor-kappaB (RANK) and osteoprotegerin (OPG), are known to be regulators of development and activation of osteoclasts in bone remodeling. Sustained osteoclast activation that occurs through TRANCE-RANK causes osteopenic disorders such as osteoporosis and contributes to osteolytic metastases. Here, we report a rationally designed small molecule mimic of osteoprotegerin to inhibit osteoclast formation in vitro and limit bone loss in an animal model of osteoporosis. One of the mimetics, OP3-4, significantly inhibited osteoclast formation in vitro (IC(50) = 10 microm) and effectively inhibited total bone loss in ovariectomized mice at a dosage of 2 mg/kg/day. Unlike soluble OPG receptors, which preclude TRANCE binding to RANK, OP3-4 shows the ability to modulate RANK-TRANCE signaling pathways and alters the biological functions of the RANK-TRANCE receptor complex by facilitating a defective receptor complex. These features suggest that OPG-derived small molecules can be used as a probe to understand complex biological functions of RANK-TRANCE-OPG receptors and also can be used as a platform to develop more useful therapeutic agents for inflammation and bone disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.