Abstract

BackgroundMacrocyclic lactone (ML) anthelmintics are used for chemoprophylaxis for heartworm infection in dogs and cats. Cases of dogs becoming infected with heartworms, despite apparent compliance to recommended chemoprophylaxis with approved preventives, has led to such cases being considered as suspected lack of efficacy (LOE). Recently, microfilariae collected from a small number of LOE isolates were used as a source of infection of new host dogs and confirmed to have reduced susceptibility to ML in controlled efficacy studies using L3 challenge in dogs. A specific Dirofilaria immitis laboratory isolate named JYD-34 has also been confirmed to have less than 100% susceptibility to ML-based preventives. For preventive claims against heartworm disease, evidence of 100% efficacy is required by FDA-CVM. It was therefore of interest to determine whether JYD-34 has a genetic profile similar to other documented LOE and confirmed reduced susceptibility isolates or has a genetic profile similar to known ML-susceptible isolates.MethodsIn this study, the 90Mbp whole genome of the JYD-34 strain was sequenced. This genome was compared using bioinformatics tools to pooled whole genomes of four well-characterized susceptible D. immitis populations, one susceptible Missouri laboratory isolate, as well as the pooled whole genomes of four LOE D. immitis populations. Fixation indexes (FST), which allow the genetic structure of each population (isolate) to be compared at the level of single nucleotide polymorphisms (SNP) across the genome, have been calculated. Forty-one previously reported SNP, that appeared to differentiate between susceptible and LOE and confirmed reduced susceptibility isolates, were also investigated in the JYD-34 isolate.ResultsThe FST analysis, and the analysis of the 41 SNP that appeared to differentiate reduced susceptibility from fully susceptible isolates, confirmed that the JYD-34 isolate has a genome similar to previously investigated LOE isolates, and isolates confirmed to have reduced susceptibility, and to be dissimilar to the susceptible isolates.ConclusionsThese results provide additional evidence for the link between genotype and the reduced susceptibility phenotype observed in such isolates as JYD-34. Further work on other isolates showing reduced susceptibility to ML is required to demonstrate the value of genetic analysis in predicting the response to ML chemoprophylaxis. The authors suggest that genetic analysis may be useful in helping to interpret the results of in vivo efficacy testing of ML heartworm preventives against D. immitis isolates.

Highlights

  • Macrocyclic lactone (ML) anthelmintics are used for chemoprophylaxis for heartworm infection in dogs and cats

  • Microfilariae (MF) collected from a small number of lack of efficacy (LOE) isolates, after development in mosquitoes to L3 larvae, were used to infect new host dogs and the isolates confirmed to be resistant to ML prophylaxis in controlled efficacy studies in dogs challenged with the L3 larvae [4, 5]

  • D. immitis JYD34 was originally isolated from the field and taken into the laboratory by the Missouri isolate genome (TRS) Labs Inc. (Athens, Georgia, USA) where it was subsequently found to have less than 100% susceptibility to 3 ML-based preventives [5, 6]

Read more

Summary

Introduction

Macrocyclic lactone (ML) anthelmintics are used for chemoprophylaxis for heartworm infection in dogs and cats. Cases of dogs becoming infected with heartworms, despite apparent compliance to recommended chemoprophylaxis with approved preventives, has led to such cases being considered as suspected lack of efficacy (LOE). Microfilariae collected from a small number of LOE isolates were used as a source of infection of new host dogs and confirmed to have reduced susceptibility to ML in controlled efficacy studies using L3 challenge in dogs. Cases of dogs becoming infected, despite apparent compliance to recommended chemoprophylaxis with approved preventives, has led to suspected lack of efficacy (LOE) [3]. Microfilariae (MF) collected from a small number of LOE isolates, after development in mosquitoes to L3 larvae, were used to infect new host dogs and the isolates confirmed to be resistant to ML prophylaxis in controlled efficacy studies in dogs challenged with the L3 larvae [4, 5]. It was of interest to determine whether JYD-34 has a genetic profile similar to the LOE and resistant isolates previously analyzed or has a genetic profile similar to the previously analyzed ML-susceptible isolates [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call