Abstract

Model generalization to the unseen scenes is crucial to real-world applications, such as autonomous driving, which requires robust vision systems. To enhance the model generalization, domain generalization through learning the domain-invariant representation has been widely studied. However, most existing works learn the shared feature space within multi-source domains but ignore the characteristic of the feature itself (e.g., the feature sensitivity to the domain-specific style). Therefore, we propose the Domain-invariant Representation Learning (DIRL) for domain generalization which utilizes the feature sensitivity as the feature prior to guide the enhancement of the model generalization capability. The guidance reflects in two folds: 1) Feature re-calibration that introduces the Prior Guided Attention Module (PGAM) to emphasize the insensitive features and suppress the sensitive features. 2): Feature whiting that proposes the Guided Feature Whiting (GFW) to remove the feature correlations which are sensitive to the domain-specific style. We construct the domain-invariant representation which suppresses the effect of the domain-specific style on the quality and correlation of the features. As a result, our method is simple yet effective, and can enhance the robustness of various backbone networks with little computational cost. Extensive experiments over multiple domains generalizable segmentation tasks show the superiority of our approach to other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.