Abstract

Latency-critical applications suffer from both average performance degradation and reduced completion time predictability when collocated with batch tasks. Such variation forces the system to overprovision resources to ensure Quality of Service (QoS) for latency-critical tasks, degrading overall system throughput. We explore the causes of this variation and exploit the opportunities of mitigating variation directly to simultaneously improve both QoS and utilization. We develop, implement, and evaluate Dirigent, a lightweight performance-management runtime system that accurately controls the QoS of latency-critical applications at fine time scales, leveraging existing architecture mechanisms. We evaluate Dirigent on a real machine and show that it is significantly more effective than configurations representative of prior schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.