Abstract

We study the Dirichlet series [Formula: see text], where [Formula: see text] is the sum of the base-b digits of the integer n, and [Formula: see text], where [Formula: see text] is the summatory function of [Formula: see text]. We show that [Formula: see text] and [Formula: see text] have analytic continuations to the plane [Formula: see text] as meromorphic functions of order at least 2, determine the locations of all poles, and give explicit formulas for the residues at the poles. We give a continuous interpolation of the sum-of-digits functions [Formula: see text] and [Formula: see text] to non-integer bases using a formula of Delange, and show that the associated Dirichlet series have a meromorphic continuation at least one unit left of their abscissa of absolute convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.