Abstract

ABSTRACTClustering of cells based on gene expression is one of the major steps in single-cell RNA-sequencing (scRNA-seq) data analysis. One key challenge in cluster analysis is the unknown number of clusters and, for this issue, there is still no comprehensive solution. To enhance the process of defining meaningful cluster resolution, we compare Bayesian latent Dirichlet allocation (LDA) method to its non-parametric counterpart, hierarchical Dirichlet process (HDP) in the context of clustering scRNA-seq data. A potential main advantage of HDP is that it does not require the number of clusters as an input parameter from the user. While LDA has been used in single-cell data analysis, it has not been compared in detail with HDP. Here, we compare the cell clustering performance of LDA and HDP using four scRNA-seq datasets (immune cells, kidney, pancreas and decidua/placenta), with a specific focus on cluster numbers. Using both intrinsic (DB-index) and extrinsic (ARI) cluster quality measures, we show that the performance of LDA and HDP is dataset dependent. We describe a case where HDP produced a more appropriate clustering compared to the best performer from a series of LDA clusterings with different numbers of clusters. However, we also observed cases where the best performing LDA cluster numbers appropriately capture the main biological features while HDP tended to inflate the number of clusters. Overall, our study highlights the importance of carefully assessing the number of clusters when analyzing scRNA-seq data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.