Abstract
In this article, we investigate the solvability of the Dirichlet problems in ring domains for elliptic linear complex partial differential equations having polyharmonic operators as main parts. First, we give higher order Green functions as fundamental solutions of the homogeneous problems using the iteration of harmonic Green functions for ring domains. Second, we introduce some classes of operators related to Dirichlet problems together with their basic properties. Next, we transform the original problems into equivalent singular integral equations. Finally, solvability of the problems is discussed by defining the adjoint problems and using Fredholm alternative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.