Abstract

The Dirichlet and Neumann problems are considered in the n-dimensional cube and in a right angle. The right-hand side is assumed to be bounded, and the boundary conditions are assumed to be zero. The author obtains a priori bounds for solutions in the Zygmund space, which is wider than the Lipschitz space C 1,1 but narrower than the Holder space C 1, α, 0 < α < 1. Also, the first and second boundary-value problems are considered for the heat equation with similar conditions. It is shown that the solutions belong to the corresponding Zygmund space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.