Abstract
ABSTRACTStructures with a periodic in-plane liquid crystal director field modulation induced by an electric field are studied in cholesteric liquid crystals (CLCs). A phenomenon of the electric-field-induced instability in a planarly aligned cholesteric cell is used to create these undulated structures. The initial field-off state is planarly aligned with the cholesteric helix axis oriented perpendicular to the cell substrates. The interaction of the CLC with an electric field results in modulation of the refractive index, which is visualised as stripe domains oriented either along or perpendicular to the rubbing direction at cell alignment surfaces. The threshold electric field for the undulation appearance and a period of stripes are measured experimentally for three Grandjean zones (ratio d/p ~ 0.5, 1.0, and 1.5, where d is a cell thickness and p is the natural cholesteric pitch). For the zone with d/p ~ 1.0 using numerical simulations, we describe in detail the director distribution at an applied electric field. It is found that the in-plane undulated structure is characterised by a conical director rotation on moving along the alignment direction. The conical axis is tilted with respect to the alignment axis. The sign of the tilt angle depends on the handedness of CLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.