Abstract
Phase junction is often recognized as an effective strategy to achieve efficient charge separation in photocatalysis and photochemistry. As a crucial factor to determine the photogenerated charges dynamics, there is an increasingly hot debate about the energy band alignment across the interface of phase junction. Herein, we reported the direct measurement of the surface potential profile over the interface of TiO2 phase junction. A built-in electric field up to 1 kV/cm from rutile to anatase nanoparticle was detected by Kelvin Probe Force Microscopy (KPFM). Home-built spatially resolved surface photovoltage spectroscopy (SRSPS) supplies a direct evidence for the vectorial charge transfer of photogenerated electrons from rutile to anatase. Moreover, the tunable anatase nanoparticle sizes in TiO2 phase junction leads to high surface photovoltage (SPV) by creating completely depleted space charge region (SCR) and enhancing the charge separation efficiency. The results provide a strong basis for understanding the impact of built-in electric field on the charge transfer across the interface of artificial photocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.