Abstract

Stainless steels are used in a myriad of engineering applications, including construction, automobiles, and nuclear reactors. Developing accurate, predictive mechanistic models for corrosion and electrochemical corrosion kinetics of stainless steels has been a topic of research studies over many decades. Herein, we quantified the aqueous corrosion kinetics of a model austenitic Fe–18Cr–14Ni (wt%) alloy in the presence and absence of applied potential using systematic in situ electrochemical atomic force microscopy (EC-AFM) and transmission electron microscopy (TEM). Without an applied bias, vertical dissolution of corrosion pits is controlled by the surface kinetics/diffusion hybrid mechanism, whereas lateral dissolution is diffusion controlled. When an electric bias is applied, the increase in corrosion rate is dominated by the nucleation of new pits. These insights gained by the in situ EC-AFM will allow applications of this method for a quantitative understanding of corrosion of a wider class of materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.