Abstract

Concurrence is an important parameter for quantifying quantum entanglement, but usually the state tomography must be determined before quantification. In this paper we propose a scheme, based on cavity-assisted atom–light interaction, to measure the concurrence of two-atom pure states and the Collins–Gisin state directly, without tomography. The concurrence of atomic states is encoded in the output coherent optical beams after interacting with cavities and the atoms therein, so the results of detection applied to the output coherent optical beams provide the concurrence data of the atomic states. This scheme provides an alternative method for directly measuring atomic entanglement by detecting coherent light, rather than measuring the atomic systems, which thus greatly simplifies the realization complexity of the direct measurement of atomic entanglement. In addition, as the cavity-assisted atom–light interaction used here is robust and scalable in realistic applications, the current scheme may be realized in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.