Abstract
Compared with cocrystal coformers, an explosive cocrystal has distinctive packing arrangements and complex intermolecular interactions. Identifying the spectral signatures of an explosive cocrystal and understanding the molecular low-frequency modes by means of the spectrum in the terahertz range are of great worth to the explicit mechanism of cocrystal formation. In this work, on the basis of the joint molecular dynamics (MD) simulations and solid-state density functional theory (DFT) calculations, we have investigated the terahertz (THz) absorption spectra of the CL-20/TNT cocrystal and its different directions as well as cocrystal coformers and determined the systematic and all-sided assignments of corresponding THz vibration modes. The THz spectral comparison of the cocrystal with different directions and the cocrystal coformers indicates that the CL-20/TNT cocrystal has five fresh low-frequency absorption features as unique and discernible peaks for identification, in which 0.25, 0.73, and 0.87 THz are attributed to intensive crystalline vibrations; 0.87 THz is also caused by C-H···O hydrogen-bonding bending vibrations; 1.60 and 1.85 THz features originate from C-H···O hydrogen-bond stretching vibrations. Additionally, the THz spectrum of the (001) direction of the CL-20/TNT cocrystal verifies that the molecular conformation of the CL-20 is the same as that in the β-polymorph, other than the initial conformation of raw material ε-CL-20.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.