Abstract
Solution-processed deposition of conducting and semiconducting materials enables the fabrication of large-area and low-cost electronic devices without the use of high-vacuum equipment. To obtain the possibility of commercializing solution-processed devices such as thin-film transistors (TFTs), easy and simple patterning process of each component become an important issue. In this study, we prepare directly patterned semiconductors and electrodes with the electrohydrodynamic (EHD) printing technique and utilize them in reliable n-type TFTs. By utilizing EHD printing technique, straight lines of zinc oxide (ZnO) semiconductor are successfully drawn from the highly soluble precursor, zinc acrylate (ZnA), and used as the active layers of TFTs. The resulting devices exhibit good TFT characteristics, and doping with a small amount of indium can enhance their performances. Furthermore, we print three different conducting materials on pre-patterned ZnO substrates for the realization of ZnO TFT arrays consisting of directly-drawn semiconductors and source/drain (S/D) electrodes. Multiwall carbon nanotube/polystyrene sulfonate (MWCNT/PSS) electrodes are found to form stable lines and their solution-processed TFTs display reliable operation with negligible hysteresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.