Abstract

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving technique for the management of lethal torso hemorrhage. Its benefit, however, must be weighed against the lethal distal organ ischemia-reperfusion injury (IRI). This study uses a novel direct gut cooling technique to manage the distal organ IRI. A rat lethal hemorrhage model was established by bleeding of 50% of the estimated total blood volume via inferior vena cava. A novel TransRectal Intra-Colon (TRIC) temperature management device was positioned in the descending colon either to maintain intra-colon temperature at 37°C or 12°C. The upper body temperature was maintained at as close to 37°C as possible in both groups. A 2F Fogarty balloon catheter was inserted via the femoral artery into the descending thoracic aorta for the implementation of REBOA. After REBOA, the balloon was deflated, and the shed blood was returned. The temperature managements were continued for additional 180 to 270 min during the post-REBOA period. All rats subjected to REBOA management of lethal hemorrhage at 37°C had severe histopathological gut and abdominal organ IRI, severe functional deficits, and died within 24 h with 100% mortality. By contrast, directly cooling the colon to 10°C to 12°C with the novel TRIC device abolished mortality, and dramatically improved ABG parameters, prevented the abdominal organ injury, and reduced the functional deficits during the 7-day post-REBOA period. Direct trans-rectal colon cooling during REBOA management of lethal hemorrhage offers extraordinary functional improvement and amazing tissue protection, and abolishes mortality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call