Abstract

Recent trends in the development of high efficiency, light-weight, compact, reliable and cost-effective space power technologies needed to support the development of next-generation military and commercial satellites will be discussed. Development of new light-weight and reduced volume electrical power system (EPS) technologies are required to enable the design of future smailsats with power requirements less than 1500 W, to monstersats having projected power levels ranging from 10-50kW for commercial communication and military space based radar type satellites. In support of these projected requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Research Laboratory's Space Vehicles Directorate. The technologies presented in this paper include high efficiency multijunction solar cells, alkali metal thermal electric converters (AMTEC), high-voltage (70-130V)/highefficiency/high-density power management and distribution (PMAD) electronics, and high energy density electrochemical and mechanical energy storage systems (sodium sulfur, lithium-ion, and flywheels). Development issues and impacts of individual technologies will be discussed in context with global presence satellite mission requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call