Abstract
Breadth-First Search is an important kernel used by many graph-processing applications. In many of these emerging applications of BFS, such as analyzing social networks, the input graphs are low-diameter and scale-free. We propose a hybrid approach that is advantageous for low-diameter graphs, which combines a conventional top-down algorithm along with a novel bottom-up algorithm. The bottom-up algorithm can dramatically reduce the number of edges examined, which in turn accelerates the search as a whole. On a multi-socket server, our hybrid approach demonstrates speedups of 3.3 -- 7.8 on a range of standard synthetic graphs and speedups of 2.4 -- 4.6 on graphs from real social networks when compared to a strong baseline. We also typically double the performance of prior leading shared memory (multicore and GPU) implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.