Abstract

We demonstrate a high-performance apertureless near-field probe made of a tapered metal tip with a set of periodic shallow grooves near the apex. The spontaneous emission from a single emitter near the tip is investigated systematically for the side-illumination tip enhanced spectroscopy (TES). In contrast with the bare tapered metal tip in conventional side-illumination TES, the corrugated probe not only enhances strongly local excitation field but also concentrates the emission directivity, which leads to high collection efficiency and signal-to-noise ratio. In particular, we propose an asymmetric TES tip based on two coupling nanorods with different length at the apex to realize unidirectional enhanced emission rate from a single emitter. Interestingly, we find that the radiation pattern is sensitive to the emission wavelength and the emitter positions respective to the apex, which can result in an increase of signal-to-noise ratio by suppressing undesired signal. The proposed asymmetrical corrugated probe opens up a broad range of practical applications, e.g. increasing the detection efficiency of tip enhanced spectroscopy at the single-molecule level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.