Abstract

Computational studies are used to show that the crystalline structure of Si causes the waveguide Kerr effective nonlinearity, γ, to vary by 10% for in-plane variation of the orientation of a silicon nanowire waveguide (SiNWG) fabricated on a standard silicon-on-insulator wafer. Our analysis shows that this angular dependence of γ can be employed to form a nonlinear Kerr grating in dimensionally uniform SiNWGs based on either ring resonators or cascaded waveguide bends. The magnitude of the nonlinear index variation in these gratings is found to be sufficient for phase matching in four-wave mixing and other optical parametric processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.