Abstract

Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μFET) of the EHD-jet printed OFETs was 5 times higher than the highest μFET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.