Abstract

AbstractDolphins produce frequency modulated (FM) whistles that are thought to promote the synchrony and coordination of behavior between members of a group. How whistles are used in this regard remains poorly understood. One possibility is that whistles have directionality and thereby convey the orientation and direction of movement of the signaler to nearby listeners. To explore this possibility, whistles from free‐ranging Hawaiian spinner dolphins (Stenella longirostris) were obtained using a towed, three‐hydrophone line array and examined for the presence of directionality. Both the estimated source level and harmonic content of whistles produced by animals traveling with or toward the array were greater than those of animals moving ahead or away from it. In addition, signals produced by animals near the array (within 20 m) were received differently on the three hydrophones spaced 11.5 m apart. These differences were greater than would be expected from transmission loss disparities alone. The results indicate that directivity is present in the transmission pattern of whistles. To infer the form of this directivity, a theoretical whistle beam pattern was established based on the assumption that the dolphin's sound source is approximated by a circular piston transducer (Au 1993). The resulting beam indicates that spinner dolphin whistles become increasingly directional with frequency, especially with respect to harmonics. The orientation‐dependent harmonic structure of whistles thus presents a potential cue that listening animals could interpret to infer the direction of movement of signalers. Harmonics are present in the whistles of many dolphin species and may represent an inherent signal design feature that promotes coordination between animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.