Abstract

Thermal infrared satellite observations of the Earth's surface are key components in estimating the surface skin temperature over global land areas. However, depending on sun illumination and viewing directional configurations, satellites measure different surface radiometric temperatures, particularly over sparsely vegetated regions where the radiometric contributions from soil and vegetation vary with the sun and viewing geometry. Over an oak tree woodland located near the town of Evora, Portugal, we compare different satellite-based land surface temperature (LST) products from the Moderate Resolution Imaging Spectroradiometer on board the Terra and Aqua polar-orbiting satellites and from the Spinning Enhanced Visible and Infrared Imager on board the geostationary Meteosat satellite with ground-based LST. The observed differences between LSTs derived from polar and geostationary satellites are up to 12 K due to directional effects. In this letter, we develop a methodology based on a radiative transfer model and dedicated field radiometric measurements to interpret and validate directional remote sensing measurements. The methodology is used to estimate the quantitative uncertainty in LST products derived from polar-orbiting satellites over a sparse vegetation canopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call