Abstract

A new method for directional velocity estimation is presented. The method uses beamformation along the flow direction to generate data in which the correct velocity magnitude can be directly estimated from the shift in position of the received consecutive signals. The shift is found by cross-correlating the beamformed lines. The approach can find the velocity in any direction, including transverse to the traditionally emitted ultrasound beam. The velocity estimation is studied through extensive simulations using Field II. A 128-element, 7-MHz linear array is used. A parabolic velocity profile with a peak velocity of 0.5 m/s is simulated for different beam-to-flow angles and for different emit foci. At 45 degrees the relative standard deviation over the profile is 1.6% for a transmit focus at 40 mm. At 90 degrees the approach gave a relative standard deviation of 6.6% with a transmit focus of 80 mm, when using 8 pulse-echo lines and stationary echo canceling. Pulsatile flow in the femoral artery was also simulated using Womersley's flow model. A purely transverse flow profile could be obtained with a relative standard deviation of less than 10% over the whole cardiac cycle using 8 pulse emissions for each imaging direction, which is sufficient to show clinically relevant transverse color flow images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call