Abstract

ABSTRACTSeismic data acquired along rugged topographic surfaces present well‐known problems in seismic imaging. In conventional seismic data processing, datum statics are approximated by the surface consistence assumption, which states that all seismic rays travel vertically in the top layer. Hence, the datum static for each single trace is constant. In case this assumption does not apply, non‐constant statics are required. The common reflection surface (CRS) stack for rugged surface topography provides the capability to deal with this non‐vertical static issue. It handles the surface elevation as a coordinate component and treats the elevation variation in the sense of directional datuming. In this paper I apply the CRS stack method to a synthetic data set that simulates the acquisition along an irregular surface topography. After the CRS stack, by means of the wavefield attributes, a simple algorithm for redatuming the CRS stack section to an arbitrarily chosen planar surface is performed. The redatumed section simulates a stack section whose acquisition surface is the chosen planar surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call