Abstract

Observations of surface gravity waves shoaling between 8‐m water depth and the shoreline on a barred beach indicate that breaking results in an increase in the directional spread of wave energy, in contrast to the directional narrowing with decreasing depth predicted by refraction theory (Snell's law). During low‐energy wave conditions, when breaking‐induced wave energy losses over the instrumented transect are small, the observed mean propagation direction and spread about the mean both decrease with decreasing depth, consistent with the expected effects of refraction. Nonlinearity causes high‐frequency components of the spectrum to become directionally aligned with the dominant incident waves. During high‐energy wave conditions with significant wave breaking on the sand bar, the observed mean directions still decrease with decreasing depth. However, the observed directional spreads increase sharply (nominally a factor of 2 for values integrated over the swell‐sea frequency range) between the outer edge of the surf zone and the crest of the sand bar, followed by a decrease toward the shoreline. Observations on a nonbarred beach also show directional broadening, with spreads increasing monotonically from the outer edge of the surf zone to a maximum value near the shoreline. Although the mechanism is not understood, these spatial patterns of directional broadening suggest that wave breaking causes significant scattering of incident wave energy into obliquely propagating components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.