Abstract

Metal additive manufacturing is rapidly developing technology, but its application in wider scale is limited by several factors. One of these is expensive raw material, because it requires certain physical properties. Two most popular metal additive manufacturing methods are printing from powder and printing from wire. Wire is usually produced by drawing it from rod. Rod can be produced by directional solidification, which is well known method to study the microstructure formation depending on various parameters during solidification. In this study directional solidification of A360 aluminum alloy with electromagnetic interaction is investigated. Aluminum alloy is induction melted and then directionally solidified into the rod 12-20 mm in diameter. Aim of this work is to investigate the role of axial DC magnetic field and electric current interaction on the grain refinement and mechanical properties of A360 aluminum alloy. It is found that electromagnetic interaction can be the approach to refine the grains, regulate the growth of oriented columnar grains and to improve mechanical properties of the material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call