Abstract

Most theoretical models on the development of solidification microstructures are based on diffusive growth conditions, whereas convection effects are generally present in most directional solidification experiments. This paper examines the effect of convection on the development of microstructures in directionally solidified Al–Cu alloys. A numerical model of convection is first discussed to characterize fluid flow as a function of sample diameter for the thermal profile of the directional solidification used in this study, and it was established that sample diameters of 1 mm or smaller is required for diffusive growth. Based on this result, a new experimental design is developed for directionally solidifying several thin samples of different diameters in the same experimental run to systematically study the effect of sample diameter on microstructure development. Sample diameters, ranging from 0.2 to 5.0 mm, were used to access both the diffusive and convective regimes. Experiments have been performed over a range of velocities and temperature gradients to characterize the effect of convection on planar, cellular and dendritic microstructures. In very thin samples of ⩽1.0 mm diameter, diffusive growth was obtained. The cell/dendrite tip composition and primary spacing were found to increase, and the tip temperature was found to decrease, as the convection effects were reduced in thinner samples. The planar to cellular transition was suppressed in the presence of fluid flow. Also, convection was found to slightly increase the critical velocity for cellular to dendritic transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.