Abstract

We demonstrate numerically the ability for directionally releasing the stored ultrashort light pulse from a microcavity by means of two-pulse nonlinear interaction in a cascading Bragg grating structure. The setting is built by a chirped grating segment which is linked through a uniform segment, including a tunable microcavity located at the junction between the two components. Our simulations show that stable trapping of an ultrashort light pulse can be achieved in the setting. The stored light pulse in a microcavity can be possibly released, by nonlinearly interacting with the lateral incident control pulse. Importantly, by breaking the symmetry of potential cavity, the stably trapped light pulse can be successfully released from the microcavity to the expected direction. Owing to the induced optical nonlinearity, the released ultrashort light pulses could preserve their shapes, propagating in a form of Bragg grating solitons through the uniform component, which is in contrast to the extensively studied light pulse trappings in photonic crystal cavities which operate at the linear regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.