Abstract

The reaction of Criegee intermediates with water vapor has been widely known as a key Criegee reaction in the troposphere. Herein, we investigated the reaction of the smallest Criegee intermediate, CH2OO, with a water cluster through fragment-based ab initio molecular dynamics simulations at the MP2/aug-cc-pVDZ level. Our results show that the CH2OO-water reaction could occur not only at the air/water interface but also inside the water cluster. Moreover, more than one reactive water molecules are required for the CH2OO-water reaction, which is always initiated from the Criegee carbon atom and ends at the terminal Criegee oxygen atom via a directional proton transfer process. The observed reaction pathways include the loop-structure-mediated and stepwise mechanisms, and the latter involves the formation of transient H3O+. The lifetime of transient H3O+ is on the order of a few picoseconds, which may impact the atmospheric budget of the other trace gases in the actual atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call