Abstract

Highly ordered metallic nanostructures have attracted an increasing interest in nanoscale electronics, photonics, and spectroscopic imaging. However, methods typically used for fabricating metallic nanostructures, such as direct writing and template-based nanolithography, have low throughput and are, moreover, limited to specific fabricated shapes such as holes, lines, and prisms, respectively. Herein, we demonstrate directional photofluidization lithography (DPL) as a new method to address the aforementioned problems of current nanolithography. The key idea of DPL is the use of photoreconfigurable polymer arrays to be molded in metallic nanostructures instead of conventional colloids or cross-linked polymer arrays. The photoreconfiguration of polymers by directional photofluidization allows unprecedented control over the sizes and shapes of metallic nanostructures. Besides the capability for precise control of structural features, DPL ensures scalable, parallel, and cost-effective processing, highly compatible with high-throughput fabrication. Therefore, DPL can expand not only the potential for specific metallic nanostructure applications but also large-scale innovative nanolithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.