Abstract
The discovery of transition metal complexes (TMCs) with optimal properties requires large ligand libraries and efficient multiobjective optimization algorithms. Here we provide the tmQMg-L library, containing 30k diverse and synthesizable ligands with robustly assigned charges and metal coordination modes. tmQMg-L enabled the generation of 1.37 million palladium TMCs, which were used to develop and benchmark the Pareto-Lighthouse multiobjective genetic algorithm (PL-MOGA). With fine control over aim and scope, this algorithm maximized both the polarizability and highest occupied molecular orbital-lowest unoccupied molecular orbital gap of the TMCs within selected regions of the Pareto front, without requiring prior knowledge on the objective limits. Instead of genetic operations on small ligand fragments, the PL-MOGA did whole-ligand mutation and crossover operations, which in chemical spaces containing billions of systems, yielded thousands of highly diverse TMCs in an interpretable manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.