Abstract

Directional motion is one of the most fundamental motions in the nature, which is driven by specific types of gradients. The transition metal dichalcogenides graded lateral heterostructure is a valuable semiconductor playing crucial roles in electronic and optoelectronic devices. This lateral heterostructure has a graded composition and is thus a promising candidate to drive possible directional motions. Here, we perform molecular dynamics simulations to demonstrate the directional motion of a graphene sheet on top of the MoS2–WSe2 graded lateral heterostructure. It is quite interesting that the direction for the diffusion is sensitive to the graphene sheet’s initial location, which is in two different regions. The graphene sheet diffuses in opposite directions for the initial location that falls in different regions. We derive an analytic formula for the interlayer coupling potential, which discloses the underlying mechanism for the dependence of the directional motion on the initial location of the graphene sheet. These results shall be varifiable by present experimental set ups and may be valuable for the application of the transition metal dichalcogenides graded lateral heterostructure in practical electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.