Abstract

Four-dimensional (4-D) antenna arrays are formed by introducing a fourth dimension, time, into traditional antenna arrays. In this paper, a time-modulated 4-D array with constant instantaneous directivity is proposed for directional modulation. The main idea is that the 4-D array transmits correct signal without time modulation in the desired direction, while transmitting time-modulated signals in other directions. As longs as the time modulation frequency is less than the bandwidth of the transmitted signal, the time-modulated signals cannot be demodulated correctly due to the aliasing effect, implying that time-modulated signals go distorted. Thus, the 4-D array can be used to transmit direction-dependent signals in secure wireless communications. The proposed idea is verified by experiments based on AM signal transmission through the 4-D array. Moreover, BPSK signal transmission through the 4-D array is studied and the bit error rate (BER) performance is investigated. Simulation results show that the BERs of time-modulated BPSK (TM-BPSK) signals transmitted through the sidelobes of the 4-D array are much higher than those of BPSK signals and almost keep unchanged even under higher SNR. Finally, two enhanced methods are presented to improve the feasibility of directional modulation by using random time sequences and random time modulation frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call