Abstract
A material direction-dependent constitutive model has been formulated for large deformation of anisotropic rubber-like materials. Anisotropic behavior has been observed in calendered plates of filled elastomers. Strain energy density functions characterizing rubber-like material behavior are usually dependent on the principal stretch ratios and are unable to take into account anisotropy. The proposed strain energy density depends on material directions and accounts for anisotropy. Model material directions have simply been chosen using existing macromolecular model chains geometry. The material strain energy density is given as the sum, over all material directions, of the elementary directional strain energy density. This elementary strain energy is determined by analogy with chain entropy of macromolecular models using the Langevin statistics. To evaluate the effectiveness of the proposed model, it is compared to uniaxial tension experimental data of anisotropic hyperelastic rubber-like materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.