Abstract

Directional mobility and controlled adhesion of water drops were obtained on superhydrophobic paper surfaces by generating high surface energy ink patterns using commercial desktop printing. By changing the curvature/shapes of the ink patterns, geometrical constraints were imposed on the movement of the three-phase liquid/solid/vapor contact line. With proper design of pattern shapes, the critical sliding angle of water drops was manipulated with respect to different directions. Adhesion tunability of water drops on superhydrophobic paper was established by design of chemical heterogeneity. Printing of 'checker' ink patterns with appropriate area fraction and feature dimensions allowed variation in the critical sliding angle of water drops. The manipulation of directional mobility and adhesion of water drops on superhydrophobic paper surfaces allows the design of novel components such as 2D flow paths, gates/diodes, junctions and drop size filters for emerging 2D paper-based microfluidics technology for biomedical diagnostic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.