Abstract

Development of bifunctional hydrazine oxidation and oxygen reduction electrocatalysts with high activity and stability is of great significance for the implementation of direct hydrazine fuel cells. Combining zero-dimensional metal nanoparticles with three-dimensional nitrogen-doped carbon nanosheets is an attractive strategy for balancing performance and cost. However, the precise construction of these composites remains a significant challenge, and thorough study of their interaction mechanisms is lacking. Herein, the CuNPs/CuSA-NPCF catalyst was constructed by anchoring copper nanoparticles on a three-dimensional nitrogen-doped porous carbon nanosheet framework through coordination of polyvinyl pyrrolidone and copper ions. The Schottky barrier of metal–semiconductor matched the Fermi level of the rectifying contact, thus enabling directional electron transfer. The resulting electron-deficient Cu nanoparticles surface exhibited Lewis acidity, which was beneficial to adsorption of hydrazine molecule. While the electron-enriched Cu–N4/carbon surface improved the adsorption of oxygen molecule, and accelerated electron supply from Cu-N4 active sites to various oxygen intermediates. The CuNPs/CuSA-NPCF Mott-Schottky catalyst exhibited excellent catalytic activity for hydrazine oxidation reaction and oxygen reduction reaction in an alkaline media. The directional manipulation of electron transfer in heterogeneous materials was an attractive universal synthesis method, providing new approach for the preparation of efficient and stable hydrazine fuel cell catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call