Abstract

Biological visual systems can detect positional changes that are finer than these systems' acuity to sine-wave gratings, a property known as hyperacuity. Some systems can even detect changes finer that the photoreceptor spacing. We report here that rabbit's directionally selective ganglion cells not only detect positional changes in the hyperacuity range, but also discriminate the direction of their motion. Our experiments show that directional selectivity occurs for edges of light moving as little as 1.1 microns (26" of visual angle) across the retina. This distance corresponds to a hyperacuity, since the acuity to sine-wave gratings of rabbit's On-Off DS ganglion cells is about 125 microns (50'). In addition, this distance is smaller than the minimal spacing between rabbit photoreceptors (1.9 microns or 46"), as estimated from cell-density studies (Young & Vaney, 1991). Such a hyperacuity suggests low-noise high-gain signal transmission from photoreceptors to ganglion cells and that directional selectivity can arise in small portions of retinal dendritic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.