Abstract

Electron-beam evaporation (EBE) of silicon permits the high-rate deposition of photovoltaic thin-film devices at low costs. The directional, non-conformal growth characteristic of EBE is systematically investigated by varying the silicon flux angle of incidence γ on the substrate surface between 0° and 49°. After solid phase crystallization the micro-structural properties of these silicon films are investigated and correlated with the electronic quality of n+/p−/p+-type solar cell stacks. As γ exceeds 30°, the porosity and oxygen content of the silicon films increase significantly coming along with the break-down of the electronic material quality. At γ>40° the silicon crystallization process is even found to be suppressed resulting from a columnar film morphology infiltrated by oxygen-rich pores. The knowledge of this critical angle is essential when textured substrates, consisting of many tilted micro-areas, are used for enhanced light absorption in the silicon film simultaneously ensuring the growth of high-quality material. Furthermore, the inclination angle γ can serve as design parameter for tailored substrate templates for the fabrication of advanced light-harvesting structures by self-organized solid phase crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.