Abstract

Flow of cerebrospinal fluid through perivascular pathways in and around the brain may play a crucial role in brain metabolite clearance. While the driving forces of such flows remain enigmatic, experiments have shown that pulsatility is central. In this work, we present a novel network model for simulating pulsatile fluid flow in perivascular networks, taking the form of a system of Stokes–Brinkman equations posed over a perivascular graph. We apply this model to study physiological questions concerning the mechanisms governing perivascular fluid flow in branching vascular networks. Notably, our findings reveal that even long wavelength arterial pulsations can induce directional flow in asymmetric, branching perivascular networks. In addition, we establish fundamental mathematical and numerical properties of these Stokes–Brinkman network models, with particular attention to increasing graph order and complexity. By introducing weighted norms, we show the well-posedness and stability of primal and dual variational formulations of these equations, and that of mixed finite element discretizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.