Abstract

In this study, a novel approach to robot navigation/planning by using half-cell electrochemical potentials is presented. The half-cell electrode’s potential is modelled by the Nernst equation to yield automatic search/detection of pipeline flaws by using the direct current voltage gradient (DCVG) technique. We introduce a theory of spherical volumetric electric density in the soil to sustain our postulates for navigational potential fields. The Nernst potential is correlated with the distance to a pipe’s flaw by proposing a fitted theoretical-empirical nonlinear regression model. From this, volumetric derivatives are solved as gradient-based fields to control wheeled robot’s motion. A nonlinear system for trajectory planning is proposed, and analytically solved by an algebraic solution. This solution directly adjust robot’s speed kinematic values to lead it toward the flaw. The inverse/forward kinematic constraints are non-holonomic, and are recursively integrated into the general potential equation. Analytical modelling is reported, and a set of numerical simulations are presented to prove the feasibility of the proposed formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.