Abstract

Modern manufacturing systems are often installed with sensor networks which generate high-dimensional data at high velocity. These data streams offer valuable information about the industrial system’s real-time performance. If a shift occurs in the manufacturing process, fault diagnosis based on the data streams becomes a fundamental task as it identifies the affected data streams and provides insights into the root cause. Existing fault diagnostic methods either ignore the correlation between different streams or fail to determine the shift directions. In this paper, we propose a directional fault classification procedure that incorporates the between-stream correlations. We suggest a three-state hidden Markov model that captures the correlation structure and enables inference about the shift direction. We show that our procedure is optimal in the sense that it minimizes the expected number of false discoveries while controlling the proportion of missed signals at a desired level. We also propose a deconvolution-expectation-maximization (DEM) algorithm for estimating the model parameters and establish the asymptotic optimality for the data-driven version of our procedure. Numerical comparisons with an existing approach and an application to a semiconductor production study show that the proposed procedure works well in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.