Abstract

An acetic acid-mediated bio-oxidation strategy with Gluconobacter oxydans was developed to produce valuable 2-ketogluconic acid from lignocellulosic biomass. Metabolically, glucose is firstly oxidized to gluconic acid and further oxidized to 2-keto-gluconic acid by Gluconobacter oxydans. As a specific inhibitor for microbial fermentation generated from pretreatment, acetic acid was validated to have a down-regulated effect on bio-oxidizing glucose to gluconic acid. Nevertheless, it significantly facilitated 2-keto-gluconic acid accumulation and improved gluconate dehydrogenase activity. In the presence of 5.0 g/L acetic acid, the yield of 2-keto-gluconic acid increased from 38.0% to 80.5% using pure glucose as feedstock with 1.5 g/L cell loading. Meanwhile, 44.6 g/L 2-keto-gluconic acid with a yield of 83.5% was also achieved from the enzymatic hydrolysate. 2-keto-gluconic acid production, found in this study, laid a theoretical foundation for the industrial production of 2-keto-gluconic acid by Gluconobacter oxydans using lignocellulosic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.