Abstract

We report on the experimental study and numerical analysis of chiral light-matter coupling in deterministically fabricated quantum dot (QD) waveguide structures. We apply in-situ electron beam lithography to deterministically integrate single InGaAs/GaAs QDs into GaAs-DBR waveguides to systematically explore the dependence of chiral coupling on the position of the QD inside the waveguide. By a series of micro-photoluminescence measurements, we determine the directionality contrast of emission into left and right traveling waveguide modes revealing a maximum of 0.93 for highly off-center QDs and an oscillatory dependence of this contrast on the QD position. In numerical simulations we obtain insight into chiral light-matter coupling by computing the light field emitted by a circularly polarized source and its overlap with multiple guided modes of the structure, which enables us to calculate directional $\beta$-factors for the quantum emitters. The calculated dependence of the directionality on the off-center QD position is in good agreement with the experimental data. It confirms the control of chiral effects in deterministically fabricated QD-waveguide systems with high potential for future non-reciprocal on-chip systems required for quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call