Abstract
Droplets directionally bouncing off moving superhydrophobic solid surfaces are universal in nature and are crucial in many biological, sustainable, environmental, and engineering applications. However, their underlying physics and regulation strategies remain relatively unknown. This paper demonstrates that the maximum directional acceleration of a post-impact droplet mainly occurs in the spreading stage and that the orientational velocity of the droplet mainly originates in the early impingement process. Furthermore, it clarifies the underlying physics based on momentum transfer process imposed by the boundary layer of impacts and proposes a strategy for regulating the directional droplet velocity using a comprehensive formula. Finally, it shows that directional bouncing reduces the flight momentum of a small flying device by 10%-22%, and the experimental values agree closely with the predicted values. This study reveals the droplet bounce orientation mechanism imposed by moving substrates, provides manipulation methods, and makes positive and meaningful discussions of practical applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.